LIFE CYCLE ASSESSMENT COMPARING REUSABLE AND SINGLE-USE SPECULA IN A BELGIAN HOSPITAL

A life cycle and economic assessment

Liesbet Demarré¹, Sophie Huysveld², Katrien Vanderwee¹, Veerle Duprez¹, Simon Malfait^{1,3}, Jo Dewulf², Norbert Fraeyman^{1,3}

¹ Nursing Department, Ghent University Hospital, Belgium; ² Faculty of Bioscience Engineering, Ghent University, Belgium; ³ Faculty of Medicine and Healthcare, Ghent University, Belgium

	RESULTS	
increasing threat to public health [1,2] for 6% of global greenhouse gas	4,00E-01	
vaginal enquilatie etill incraacing [2]	2 505 01	

8

kg

Raw materials and manufacturing speculum

BACKGROUND

- Ongoing climate change poses an increasing threat to public health [1,2]
- Healthcare sector is responsible for 6% of global greenhouse gas emissions [2]
- Use of single-use items, such as a vaginal specula, is still increasing [3]
- Single-use items can cause additional health damage due to the human toxicological impact of all stages of their product's life cycle

AIMS

Evaluate the potential environmental and financial impact of the use of reusable versus single-use vaginal specula

MATERIALS & METHODS

The functional unit was one pelvic examination by either

RU: sterile stainless steel reusable

SU PLA: single-use speculum containing biobased plastic of

Life cycle greenhouse gas emissions (kgCO2 eq) of one pelvic examination

RU	SU ABS	SU PLA	EO SU
1.65E-07	4.76E-07	5.16E6-07	4.53E-07
4.09E-10	1.14E-09	1.351E-09	1.05E-09
7.90E-03	3.37E-02	1.65E-02	2.71E-02
	RU 1.65E-07 4.09E-10 7.90E-03	RUSUABS1.65E-074.76E-074.09E-101.14E-097.90E-033.37E-02	RUSUABSSUPLA1.65E-074.76E-075.16E6-074.09E-101.14E-091.351E-097.90E-033.37E-021.65E-02

EO SU: single-use speculum consisting of polystyrene blades and polyethylene bolt and sterilised with ethylene oxide

LCA 18 midpoint & 3 endpoint impact indicators

ISO 14040/14044 guidelines & modelled by SimaPro 9.4.0.2

- Hospital perspective
- Purchase cost & charged rate of central sterilisation

CONCLUSIONS

- RU specula produced the least GHG emissions, with packaging as major contributor to the environmental impact
- Use of renewable energy sources and waste steam was jointly responsible for the limited impact of sterilisation process
- Biobased plastics are often presented as more environmentally friendly, but this may not be the case
- Total cost of RU & SU was comparable

ACKNOWLEDGMENTS

This study was commissioned by the Federal Public Service for Health, Food Chain Safety and Environment, the Directorate-General for the Environment.

Figures are expressed according to LCA-standards; E-01= x 0.1;E-02= x 0.01; E-03= x 0.001; E-04= x 0.0001; ...; E+01= x10; E+02= x 100; E+03= x 1000; E+04= x 10 000;

Overview of endpoint estimates for reusable and single-use specula

Overview of total cost estimates for reusable and single-use specula

REFERENCES

- 1. Drew, J., Christie, S. D., Tyedmers, P., Smith-Forrester, J., & Rainham, D. (2021). Operating in a Climate Crisis: A State-of-the-Science Review of Life Cycle Assessment within Surgical and Anesthetic Care. Environmental Health Perspectives, 129(7), 076001. https://doi.org/10.1289/EHP8666
- 2. Tennison, I., Roschnik, S., Ashby, B., Boyd, R., Hamilton, I., Oreszczyn, T., Owen, A., Romanello, M., Ruyssevelt, P., Sherman, J., Smith, A., Steele, K., Watts, N., & Eckelman, M. (2021). Health care's response to climate change: A carbon footprint assessment of the NHS in England. The Lancet Planetary Health, 5, e84-e92. https://doi.org/10.1016/S2542-5196(20)30271-0
- 3. Demarré, L., Vanderwee, K., Duprez, V., Malfait, S., Huysveld, S., & Fraeyman, N. (2023). Reducing single-use materials in medicine and health care. An exploratory study on sustainability of commonly used materials in hospitals. Federal Public Service. https://www.health.belgium.be/sites/default/files/uploads/fields/fpshealth_theme_file/reducing_sup_in_medicine_and_healthcare.pdf

